

Autosomal Dominant Polycystic Kidney Disease (ADPKD): Disease Progression for Radiology

© 2022 Otsuka Pharmaceutical Development & Commercialization, Inc. All rights reserved.

May 2022 US.NephU.D.22.00004

Section Outline

- ADPKD Overview
- Overview of Disease Progression and Total Kidney Volume
- ADPKD Classification

ADPKD OVERVIEW

A Dramatic Presentation of ADPKD

62 y/o woman with a Total kidney volume of 2760 cc (R 1700, L 1060) and Total liver volume of 8900 cc. Her creatinine is 1.8 mg/dL

Images used with permission from Dr. Neera Dahl.

What Is PKD?

1.

2.

4

5.

*The "no mutation detected" (NMD) group may contain those patients with mutations in other genes impacting cystic development, such as GANAB.5

ADPKD=autosomal dominant PKD; ARPKD=autosomal recessive PKD; GANAB=gene encoding glucosidase II 3. subunit-a: NMD=no mutation detected: PKD=polycystic kidney disease: PKHD1=polycystic kidney and hepatic disease 1.

- Harris PC and Torres VE. (2009). Annu Rev Med. 60:321-337.
- Jauregui AR et al. (2005). Exp Cell Res. 305(2):333-342.
- Heyer CM et al. (2016). J Am Soc Nephrol. 27(9):2872-2884.
- Irazabal MV et al. (2017). Nephrol Dial Transplant. 32(11):1857-1865.
- Lanktree MB, Chapman AB. (2017). Nat Rev Nephrol. 13(12):750-768.

ADPKD Is the Most Common Life-threatening Inherited Renal Disease

ADPKD does not discriminate on gender, race, ethnicity, or geography^{1,2}

- ADPKD affects both sexes equally, and occurs in all ethnicities³
- ADPKD is the most common life-threatening inherited renal disease and accounts for up to \sim 5% of all patients with ESRD²
- ADPKD is the fourth leading cause of ESRD in the United States after diabetes, hypertension, and glomerulonephritis²
- As many as 1:2000 people worldwide are currently diagnosed with ADPKD,⁴ and between 1:400 and 1:1000* people living today will be diagnosed with ADPKD in their lifetime¹

*The higher prevalence value of 1:1000 is believed to be inaccurate because the data are based on a postmortem study and therefore report lifetime morbid risk rather than point prevalence. ADPKD=autosomal dominant polycystic kidney disease; ESRD=end-stage renal disease.

- 1. Torres VE, Harris PC. (2009). Kidney Int. 76(2):149-168. 2. United States Renal Data System. 2016 USRDS Annual Data Report Volume.
- 2. ESRD in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2016 (accessed 14 February 2019).
- 3. Chebib FT, Torres VE. (2016). Am J Kidney Dis. 67(5):792-810.
- 4. Willey C. DRAFT: The Descriptive Epidemiology of ADPKD in the U.S. 2017.

ADPKD Is a Systemic Disease with Renal and Extrarenal Manifestations

The information provided by NephU is intended for your educational benefit only. It is not intended as, nor is it a substitute for medical care or advice or professional diagnosis. Health care professionals should use their independent judgement when reviewing NephU's educational resources. Users seeking medical advice should consult with a health care professional.

2. 3.

Ultrasound (US) is the Most Commonly Used Imaging Modality for Diagnosis of ADPKD¹

US of right kidney in a 55-year-old patient with ADPKD³

Unified US Criteria for Diagnosis in Patients With Positive Family History (Pei Criteria)²

Age (yr)	No. of cysts required for diagnosis	
15–39	Total ≥3 Unilateral or bilateral	
40–59	Total ≥4 ≥2 in each kidney	
≥60	Total ≥8 ≥4 in each kidney	

1. Pei Y et al. J Am Soc Nephrol. 2015;26(3):746-753.

2. Pei Y et al. J Am Soc Nephrol. 2009;20(1):205-212;

3. Saedi D et al. Cases J. 2009;2(1):66.

Differential Diagnosis of Multiple Renal Cysts

- Renal cysts can be a manifestation of both hereditary and acquired disorders other than ADPKD¹
 - Acquired renal cystic disease¹
 - Polycystic liver disease¹
 - ARPKD¹
 - Tuberous sclerosis¹
 - von Hippel-Lindau syndrome¹

- Orofaciodigital syndrome I¹
- Medullary sponge kidney¹
- Renal cysts and diabetes syndrome²
- Glomerulocystic disease¹
- Simple renal cysts¹

ARPKD=autosomal recessive polycystic kidney disease

1. Pei Y, Watnick T. Adv Chronic Kidney Dis. 2010;17(2):140-152; 2. Chebib FT, Torres VE. Am J Kidney Dis. 2016;67(5):792-810.

Diagnostic Algorithm for ADPKD

*Finding on ultrasound.

ADPKD=autosomal dominant polycystic kidney disease; US=ultrasound.

1. Figure adapted from Chebib FT and Torres VE. (2016). Am J Kidney Dis. 67(5):792–810.

Simple Renal Cysts in the General Population

Incidence of Simple Cysts on Ultrasound (N=729) ¹			
Age	Unilateral Cyst (%)	Bilateral Cysts (%)	
15–29	0	0	
30–49	1.7	1	
50–70	11.5	4	
>70	22.1	9	

Incidence of Simple Cysts on Contrast-Enhanced CT ²		
Age	Age 18–49 yr N=1345 (%)	Age 50–75 yr N=603 (%)
Any cyst ≥2 mm	39	63
Any cyst ≥5 mm	22	43
Bilateral cysts ≥5 mm	2.3	11
Ravine criteria for ADPKD*	0.3	0.8

CT=computed tomography.

*Ravine criteria for ADPKD are intended for assessing ultrasound cysts in first-degree relatives with ADPKD. Cyst thresholds are age 15–29 years, ≥2 cysts; 30–59 years, ≥2 cysts in each kidney; and 60 years and older, ≥4 cysts in each kidney.

- 1. Ravine D et al. Am J Kidney Dis. 1993;22(6):803-807;
- 2. Rule AD et al. Am J Kidney Dis. 2012;59(5):611-618.

OVERVIEW OF DISEASE PROGRESSION AND TOTAL KIDNEY VOLUME

Variability of ADPKD Disease Progression

- The rate of disease progression could vary significantly among patients with ADPKD, even within the same family^{1,2}
- Patients with rapidly progressing ADPKD reach ESRD at a younger age³
- Recent studies show that baseline clinical, genetic and imaging data can identify patients who are at risk for rapid progression³

ADPKD=autosomal dominant polycystic kidney disease; ESRD=end-stage renal disease

- 1. Grantham JJ et al. (2006). N Engl J Med. 354: 2122–30.
- 2. Harris PC, Rossetti S. (2010). Adv Chronic Kidney Dis. 17(2): 131–9.
- 3. Gansevoort RT et al. (2016). Nephrol Dial Transplant. 31(3): 337–48

Cyst Burden and Patient Complications in ADPKD: An Overview

ADPKD=autosomal dominant polycystic kidney disease; GFR, glomerular filtration rate.

2. 1. Grantham JJ et al. (2011). Nat Rev Nephrol. 7(10):556-566.

Predictors of Rapid Disease Progression in ADPKD

- lipoprotein; PKD1=polycystic kidney disease gene 1.
- 1 Figure adapted from Gansevoort RT et al. (2016). Nephrol Dial Transplant. 31(3):337-348.

- 3. Nowak KL, et al. (2018). J Am Soc Nephrol. 29(2):571-578.
- 4 Torres VE, et al. (2011). Clin J Am Soc Nephrol. 6(3):640-647.

Change in Kidney Volume in ADPKD Precedes Changes in Renal Function

Kidney and cyst volume are determinants of renal outcome and precede changes in renal function by many years¹

[†]% change standardized to common unit. GFR=glomerular filtration rate; htTKV=height-adjusted total kidney volume.

1. Chapman AB et al. (2012). Clin J Am Soc Nephrol. 7(3): 479-86.

GFR and TKV in ADPKD Progression

Over 13 years, TKV increased by 300%, with a 53% loss of kidney function¹

1. FDA.http://www.fda.gov/downloads/AdvisoryCommittees/Committees/MeetingMaterials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/UCM364583.pdf. (accessed 18 Nov 2014).

Increased Kidney Volume Is Associated With Renal Complications

Analysis of Several Observational Studies ¹				
		Mean Volume/		
Renal Complication	Patients, n	Complication Present	Complication Absent	P Value
Loss of GFR	220	598 ± 368	366 ± 168	<0.0001
Hypertension	241	628 ± 48	352 ± 33	<0.0001
Gross hematuria	191	820 ± 87	588 ± 52	<0.03
Proteinuria	270	1190 ± 93	578 ± 32	<0.0001

1. Grantham JJ et al. (2006). Clin J Am Soc Nephrol. 1(1): 148-57.

	Manual Segmentation	Ellipsoid Formula
Imaging modality	MRI and CT*	MRI, CT,* and US
Analysis time	40 minutes 5 minutes	
Accuracy	100%	87% with MRI or CT; 21% with US†
Directions	 Trace kidney outline onto cross-sectional images Multiply all traced areas by slice thickness Combine slice volumes 	 Measure length, width, and depth for both kidneys Calculate volume using ellipsoid formula

CT=computed tomography; MRI=magnetic resonance imaging; TKV=total kidney volume; US=ultrasound. *CT-related data were not available, but by approximation can be considered close to MRI methodology. †Measurement accuracy according to Mayo Clinic model classification.

1. Figures reproduced with permission from Magistroni R et al. Am J Nephrol. 2018;48(1):67-78.

Planimetry for Determining Total Kidney Volume

Image used with permission from Dr. Neera Dahl.

Improving Awareness & Patier

Calculating Total Kidney Volume (TKV) Using the Ellipsoid Formula^{1,2}

Please consider giving dimensions (sagittal length, coronal length, width, depth) if unable to perform planimetry

Ellipsoid formula based on the ellipsoid shape $\pi/6 \times (LxWxD)$

1. Irazabal MV et al. J Am Soc Nephrol. 2015;26(1):160-172;

2. Mayo Foundation and Medical Education and Research. https://www.mayo.edu/research/documents/pkd-center-adpkd-classification/doc-20094754. Accessed January 7, 2020.

Imaging Modalities for TKV: Strengths and Limitations1

lmage Modality	Measurement Accuracy	Strengths	Limitations
MRI	Can detect cysts ≥2 mm in diameter	 Can reliably measure kidney volume over short periods of time with minimal bias and low inter- and intraoperator variability Allows segmentation of individual cysts, providing quantitative assessment of disease 	CostLack of availability
СТ	Can detect cysts ≥2 mm in diameter	Provides accurate and reliable measurement of TKV and cyst volume in ADPKD	 Potentially nephrotoxic contrast medium (contrast not needed for TKV) Exposure to radiation (low-dose protocols in some centers)²
Ultra-sound	Can detect cysts >1 cm in diameter	 Does not require radiation Widely available Low cost 	 Lacks precision and accuracy for detecting short-term changes in kidney volume Highly operator-dependent

TKV can be calculated based on a single image without a requirement for serial procedures

CT=computed tomography; MRI=magnetic resonance imaging; TKV=total kidney volume. 1. Magistroni R et al. Am J Nephrol. 2018;48(1):67-78;. 2. Bevilacqua MU et al. Radiology. 2019;291(3):660-667.

ADPKD CLASSIFICATION

ADPKD Imaging Classification: Typical vs Atypical Renal Presentation

- Patients were classified as Typical (Class I) or Atypical (Class II) based on cyst presentation¹
- Typical (n=538) patients were subclassifed according to htTKV and age¹
- Atypical patients (n=52) were excluded from the study since baseline TKV in these patients was found to be a poor predictor of future loss of renal function

Adapted from Irazabal MV et al. (2015). J Am Soc Nephrol. 26(1): 160-72.

1. Irazabal MV et al. (2015). J Am Soc Nephrol. 26(1): 160–72.

TKV-Based Classification of ADPKD

Age and htTKV predicts decline in eGFR over time in patients with a typical* presentation of ADPKD

Class	Estimated kidney growth rate: yearly percentage increase	Risk for eGFR decline
1E	>6.0%	High risk
1D	4.5 - 6.0%	High risk
1C	3.0 - 4.5%	High risk
1B	1.5 - 3.0%	Intermediate risk
1A	<1.5%	Low risk

*Typical presentation refers to patients with a bilateral and diffuse cyst distribution in both kidneys with mild to severe replacement of kidney tissue by cysts, with all cysts contributing similarly to TKV. ADPKD=autosomal dominant polycystic kidney disease; eGFR=estimated glomerular filtration rate; htTKV=height-adjusted TKV; TKV=total kidney volume.

Irazabal MV et al. (2015). J Am Soc Nephrol. 26:160-172.

ADPKD Classification Defines Patients With Different Risks for Decline in eGFR

Estimated slope (ml/min per 1.73 m2 per year) by subclass (A–E)

Subclass	Men	Women
А	-0.23	0.03
В	-1.33	-1.13
С	-2.63	-2.43
D	-3.48	-3.29
E	-4.78	-4.58

1. Irazabal MV et al. (2015). J Am Soc Nephrol. 26(1): 160-72.

Cyst Burden and Patient Complications in ADPKD: An Overview

ADPKD=autosomal dominant polycystic kidney disease; GFR, glomerular filtration rate.

1. Grantham JJ et al. (2011). Nat Rev Nephrol. 7(10):556-566.

A High Risk ADPKD Patient

- 25 y/o man with ADPKD diagnosed as a young child. He has had hypertension for 2 years.
- His father had ADPKD and subsequently underwent a renal transplant in his mid-50s.
- He has no flank or back pain, and no hematuria
- PE: WD/WN in NAD, BMI 25, 160/122, 70
- Normal exam, no palpable cysts or edema
- Creatinine 88.4 µmol/L (1.0 mg/dL)
- Kidney volumes: Right 530 ml, Left 594 ml.
- Height adjusted TKV is 661 ml/m

Total Kidney Volume helps us to identify him prior to loss of kidney function

- Mayo Class 1E
- Assuming a truncating PKD1 mutation his PROPKD score is 9.

Image used with permission from Dr. Neera Dahl.

Summary

- The rate of disease progression could vary significantly among patients with ADPKD, even within the same family^{1,2}
- The CRISP study demonstrated that baseline httkv (measured by stereology MRI) is an independent predictor of future GFR decline in ADPKD patients³
- Ideally every abdominal imaging report of an ADPKD patient will contain the following:
 - A comment on whether the cyst distribution is typical or atypical
 - Kidney measurements or the kidney volume of each kidney

1. Grantham JJ et al. (2006). N Engl J Med. 354: 2122–30. 2. Harris PC, Rossetti S. (2010). Adv Chronic Kidney Dis. 17(2): 131–9 . 3. Chapman AB et al. (2012). Clin J Am Soc Nephrol. 7(3): 479–86

